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A procedure is presented, based on statistical-mechanical theory, for predicting 
the equation of state of compressed normal liquids and their mixtures from two 
scaling constants that are available from measurements at ordinary pressures 
and temperatures. The theoretical equation of state is that of Ihm, Song, and 
Mason, and the two constants are the enthalpy of vaporizatkm and the liquid 
density at the triple point, which are related to the cohesive energy density of 
regular solution theory. The procedure is tested on a number of substances 
ranging in complexity from Ar and CO 2 to n-heptane and toluene. The results 
indicate that the liquid density at any pressure and temperature can be 
predicted within about 5 %, over the range from Ttp to To and up to the freezing 
line. Possible methods of determining the scaling constants are discussed, as well 
as other possible choices for scaling constants. 

KEY WORDS: cohesive energy; compressed liquids and mixtures; equation of 
state; statistical mechanics. 

1. I N T R O D U C T I O N  

The mechanical  behavior  of compressed l i qu ids - - tha t  is, the equa t ion  of 

s t a t e - i s  needed for the design and  analysis of m a n y  processes at high 
pressures. M a n y  equat ions  of state, dat ing back to the work of P. G. Tai t  

over 100 years ago, have been proposed for the correlat ion and  predict ion 
of the p - v - T  properties of compressed liquids [1 -6 ] .  However,  almost  all 

require at least a few measurements  at high pressure for any part icular  
l iquid of interest; m a n y  also require knowledge of the critical constants.  

For  example, m a n y  of the empirical equat ions  of state are based on  some 
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variation of the fact that the isothermal bulk moclulus (reciprocal com- 
pressibility) is very nearly linear in the pressure over the whole range from 
the vapor pressure curve to the freezing line. Thus each p-p isotherm 
involves at least four constants: the pressure and density of some reference 
state (such as the vapor pressure and the density of the saturated liquid) 
and the two constants needed to characterize such a linear relationship. 
Unfortunately, all four constants are temperature dependent. 

The purpose of this paper is to present a method for predicting the 
equation of state of a compressed liquid from properties that are readily 
available at ordinary pressures and temperatures. In particular, we use the 
latent heat of vaporization and the liquid density at the triple point as two 
numbers that can correlate and predict the behavior of the compressed 
liquid. These two numbers, if not directly available, can be obtained with 
sufficient accuracy from two measured vapor pressures and liquid densities. 
(The latent heat and liquid density are closely related to the cohesive 
energy density of regular solution theory [7], hence the title of this paper.) 

2. THEORY 

The theoretical background is as follows. The linear relation between 
liquid bulk modulus and pressure, due essentially to Tait [1, 3, 4, 6], 
remained empirical until very recently, when it was shown how the relation 
could be obtained from an equation of state that had been derived from 
statistical-mechanical theory [8]. This demonstration was restricted to 
fluids whose particles interacted with pairwise central foces--specifically, 
argon and a Lennard-Jones (12, 6) fluid. In molar units, this equation of 
state has the form [9, 10] 

P - 1 + B p + ~ p [ g ( G ) - -  1] (1) 
pRT  

where p is the pressure, p is the molar density, R T  has its usual meaning, 
B is the second virial coefficient, ~ is a temperature-dependent parameter 
that scales for the softness of the repulsive forces, b is a temperature- 
dependent analogue of the van der Waals covolumc related to ~ by 
b=d(otT)/dT, and g(a) is the pair distribution function at contact for 
equivalent hard spheres of diameter o-. The parameters B, .~, and b are 
related to the intermolecular potential by integrations, but we do not need 
to write down the expressions here. The diameter a is related to b by 
b=(2~No/3)c~ 3, where No is Avogadro's number. The function g(a) 
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depends on the single variable bp, and its form was taken from the 
Carnahan-Starling equation of state for hard spheres, 

1 - -  r / / 2  
g(bp)= (1 __  / / ) 3 '  t I =bp/4 (2) 

where r/is the packing fraction. 
The extension of Eq. (1) to molecular fluids turned out to be fairly 

straightforward, with the same general mathematical form being retained 
[10,11] 

P = 1 + Bp + ~pEa(bp) - 1 ] (3) 
pRT 

where the fundamental expressions for B, ~, and b now involve integrations 
over molecular orientation angles, and G(bp) is an average pair distribu- 
tion function at contact for equivalent hard nonspherical convex bodies. 
The form adopted for G(bp) was a generalization to nonspherical bodies of 
the Carnahan-Starling formula of Eq. (2) for hard spheres [12], with at 
least one adjustable constant to characterize the nonsphericity. We do not 
need to write down any of these expressions here. The difficulty with the 
direct use of Eq. (3) is that intermolecular forces for most nonspherical 
molecules are known only poorly, if at all. However, B(T) can be found 
experimentally, and 7(T) and b(T) can be calculated from B(T) by means 
of simple two-constant scaling rules [10, 11]. The reason is that 7 and b 
depen d only on the intermolecular repulsive forces and are therefore 
relatively insensitive to the details of the shape of the intermolecular 
potential; they can ,be characterized by two constants corresponding to an 
average potential range and strength. 

Thus the minimum input information needed to use Eq. (3) consists of 
experimental values of B(T) plus some high-density data to fix the value of 
an adjustable "shape" constant in G(bp). It is easy to show that Eq. (3) still 
predicts a nearly linear dependence of the liquid bulk modulus on the 
pressure and, therefore, extends the statistical-mechanical basis of the Tait 
relation to molecular liquids. 

A new strong principle of corresponding states is contained in Eq. (3), 
and this principle has led to an appreciable improvement in both accuracy 
and simplicity [13]. The basic idea is that the form of G(bp) does not need 
to be specified, according to some model of a fluid composed of hard con- 
vex bodies but that Eq. (3) can be solved for G(bp) in terms of Z=-p/pRT, 
p, B, and ~, all of which can be determined from experiment, and this 
particular combination of quantities is then predicted to be a function of 
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the single variable bp. A whole p-v-T surface is thereby collapsed to a single 
curve by plotting the data in this special way. 

Analysis of experimental data according to this principle showed the 
need for a small correction to Eq. (3) to account for some effects of attrac- 
tive forces, of the form 6bp2(~-B)/(I + ~bp), where 6 is a small constant, 
equal to or less than 0.10. When this correction term is added to Eq. (3), 
the resulting solution for G(bp) is 

: 1  [ Z _ l + ( ~ - B ) _ p . ]  
G(@)= l+a@ J 

(4) 

Plots ofp-v-T data for a number of fluids according to Eq. (4) showed not 
only that the right-hand side was indeed a function of the single variable 
bp, but also that G -1 vs bp was a straight line rather than the curve 
predicted for a hard-body fluid. The latter result was interpreted to be an 
effect of many-body forces [13], but theory has as yet offered no explana- 
tion of why G-  1 vs bp is a straight line rather than some other curve. This 
linear result has been found to hold for a wide variety of substances, 
including noble gases, diatomic molecules, various polyatomic inorganic 
molecules, and a number of hydrocarbons [13, 14], but with slopes that 
depend on the particular substance. 

The foregoing results culminate in the equation of state that is the 
starting point for the present work: 

p (B - ~) p .xp 
- 1 + - -  + - -  ( 5 )  

pRT 1 + 6bp 1 - )obp 

Here 2 is the absolute value of the slope of G-1 vs bp, equal to 0.454 for 
noble-gas fluids and less for more complex fluids, and it has been found 
that 6 can be taken equal to 0.22 2 with sufficient accuracy [13, 14]. The 
nearly linear dependence of the liquid bulk modulus on pressure is still 
predicted by Eq. (5). 

The remaining problem is how to use Eq. (5) to predict the behavior 
of a compressed liquid on the basis of minimal input information. In 
particular, for many liquids likely to be encountered the second virial 
coefficient of the vapor is probably not known, or even the critical 
constants. We now turn to a correlation scheme for circumventing these 
difficulties. 

3.  C O R R E L A T I O N  P R O C E D U R E  

The second virial coefficient B(T) plays a central role in the applica- 
tion of Eq. (5): it is used both directly and as the source of scaling con- 
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stants for the calculation of c~(T) and b(T). Given B(T) for the vapor, and 
some high-density information to fix the value of 2, the entire p-v-T surface 
of a fluid can be predicted, including the properties of the compressed 
liquid. Although accurate direct measurements of B are best, in their 
absence there are several correlation schemes, usually based on a principle 
of corresponding states, by which B can be estimated with reasonable 
accuracy. The best of these require three constants [15, 16]: the critical 
temperature (Tr the critical pressure (Pc), and the Pitzer acentric factor 
(co). In the simplest scheme the dimensionless quantities Bpc/RTc vs T/Tc 
form a universal family of curves indexed by the constant o9. The value of 
co is determined from the vapor pressure at a temperature of about 
T~0.7 To. Using such a scheme, Tao and Mason [14] have shown how 
Tc, Pc, and o9 can be used with Eq. (5) to predict the equation of state for 
normal fluids over their entire density range, for both single substances and 
mixtures. This is the recommended procedure when accurate measurements 
of B(T) are unavailable, and values of these three constants are available 
for many substances [17]. 

However, the problem we wish to consider here involves predictions 
for liquids for which Tc and po are not known, either because they have 
merely not been measured or because the liquid decomposes at high 
temperatures. 

The problem thus reduces to finding at least two scaling constants 
available from simple measurements at ordinary temperatures and 
pressures--an energy constant (the analogue of RTc) and a volume or den- 
sity constant (the analogue of the pseudocritical molar volume, RTo/pc). 
These would be used to estimate B(T) from a corresponding-states correla- 
tion, with the energy constant used to form a dimensionless temperature 
and the volume constant to form a dimensionless second virial coefficient. 
A third constant analogous to co might then be added as a refinement. 

Constants of this sort have been used for many years in the theory of 
solutions of nonelectrolytes, in particular the cohesive energy and the 
cohesive energy density ("internal pressure") [-7, 18, 19]. "The cohesive 
energy is the enthalpy of evaporation plus the change in enthalpy in 
expanding from the vapor pressure to the ideal-gas state minus RT" [19]. 
We have found empirically that the enthalpy of vaporization itself works 
just as well as the cohesive energy in furnishing a temperature scale for the 
calculation of B(T); our temperature scale constant is therefore simply 
AHvap/R. The cohesive energy density furnishes a pressure scale; on con- 
verting this to a volume scale with the chosen temperature scale, we simply 
recover the molar volume vl of the liquid. Since both AHvap and vl depend 
somewhat on temperature, we need to pick a reference temperature at 
which to fix the scaling constants. The only unique point on the liquid- 

840/14/4-6 
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vapor coexistence curve other than the critical point  is the triple point, and 
we accordingly adopt the triple-point temperature as our reference. It 
should be emphasized that this is not a crucial choice, merely a convenient 
one. The ordinary freezing point would probably work as well, inasmuch 
as our final correlation scheme tends to be self-correcting, as explained 
later. In any case, our two scaling constants here are AHv~p/R and Ptp, the 
molar density at the triple point. 

We can now check experimental data to see whether a dimensionless 
plot of Bpt p as a function of RT/AHva p results in a universal curve or, at 
least, a close family of curves that can be indexed by a third constant like 
co. It comes as somewhat of a surprise that a single curve serves to correlate 
a wide variety of nonpolar fluids with sufficient accuracy for our purposes. 
This is illustrated in Fig. 1 for a selection of substances having values of o) 
ranging from 0 (argon) to 0.394 (n-octane). Apparently the "shape" effects 

o_  
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-20 

I I I 

50 100 150 

(AHvap/RT)2 

Fig. 1. Correlation plot for the second virial coefficient. O, 
Ar (09=0.000); A, CO2 (o=0.225); ~ ,  C6Hf, (09=0.212); V, 
n-C6H14 (o9=0.296); �9 n-C7H16 (o=0.351); O, n-C8H18 
(09 = 0.394). The curve is given by Eq. (6). 
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described by co affect zJHva p and Ptp in such a way as to tend to compensate 
for their influence on B. 

In constructing Fig. 1 we have taken Ptp (often approximated by pfp) 
f romthe  tabulations of Vargaftik [20] and used his vapor-pressure tabula- 
tions to calculate AHvap/R from the Clausius-Clapeyron equation. The 
values used are collected in Table I, together with the values of 2 used to 
construct Fig. 2, obtained as described below. The second virial coefficients 
were taken from the compilation of Dymond and Smith [213. 

The resulting correlation for B can be represented by the empirical 
expression 

Bpt p = 0.403891 - O.076484(~lHv~p/RT) 2 -  O.O002504(AHvap/RT) 4 (6) 

which is shown as the curve in Fig. 1. This expression can be used to 
predict B over the temperature range from Ttp to To. Once B(T) is 
known, the parameters c~(T) and b(T) follow from almost any reasonable 
two-constant effective pair potential; the results can also be scaled by Ptp 

and AHvap/R and are fitted by the expressions 

Table I. Parameters Used 

zJnvap/R Ptp Ztp 
Substance (K) (mol. 1-1) (K) 2 

Ar 797 35.42 83.81 0.381 
Xe 1532 22.73 161.3 0.381 
N 2 702 30.98 63.17 0.413 
02 868 40.82 54.36 
CO 2 1999 26.79 216.6 0.374 

CH 4 1022 28.16 90.70 
C2H 6 1796 21.91 89.88 
C 3 H 8 2337 16.64 85.6 0.494 
n-Cn Hlo 2875 12.65 134.9 0.491 

n-C 0 H14 3628 8.78i 177.8 0.497 
n-C7HI6 4039 7.720 182.6 0.513 
n-C 8 HI8 4356 6.753 216.4 0.514 

C2H 4 1748 23.39 104.0 

C6H 6 3633 11.48 278.7 0.435 
C6 H5 CH3 4283 10.44 178.2 0.508 
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~Ptp = aa exp[--cl(RT/AHvap)]  + a2{ 1 - e x p [ -  c2(AHvap/RT) 1/4] } (7) 

bptp = al[ 1 - cI( RT/AHvap) ] exp [ - c~(RT/AHv~p) ] 

+ a 2 { 1 -  [1 + 1c2(zJHvap/RT)l/4" ] exp[-c2(AHvap/RT)l /4]} (8) 

a~ = -0.1053, Cl = 5.7862 

a2 = 2.9359, c2 = 0.7966 

These expressions are based on results obtained with a Lennard-Jones 
(12, 6) potential [10]. 

It remains to find the constant 2 in order to use Eq. (5). Once B, c~, 
and b are known, it takes only one experimental point to calculate 2 from 
Eq. (5). For  this purpose we can use the same data that was used to find 
AHvap--for example, the vapor pressure and liquid density at the triple 
point or the freezing point. This method for determining )~ makes the whole 
procedure self-correcting. If the correlation of Eq. (6) produces values of B 
that are somewhat in error, or if the input values of zJHva p and Ptp are not 
accurate, the defects will be largely compensated by the determination of 2. 
Thus the scatter evident in Fig. 1 is not a serious problem. 

i I I I 

0.4 ca~, a 

0.2 n ~  

0 I I I I 

0.6 0.8 1.0 

~b9 

Fig. 2. Correlation plot of G -~ vs 2bp for different fluids 
according to Eq. (9), covering the range between the triple and 
the critical temperatures. The points are from experimental 
p-v-T data: �9 Ar; O, Xc; A0 N2; [Z, CO2; V, C3H8; �9 
n-C4Hlo ; V, n-C6nl4 ; I ,  n_CTHI6; A, C6H6; 0 ,  
C6HsCH 3. The solid line is 1 -2bp.  
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4. RESULTS 

A simple way of plotting experimental data for many diverse 
compressed liquids on a single graph is as G ~ vs 2bp, where 

1 [ (~X =g)p ~--1 
-~p  Z - l +  = l - 2 b p  (9) 

G 1 + 0.222@3 

Note that ~p can be written as a product of dimensionless quantities, ~Ptp 
and P/Ptp, and similarly for Bp and bp. According to Eq. (5) all the 
measurements should fall on the straight line given by 1 -  2@. Such a 
graph is shown in Fig. 2 for 10 substances, ranging in character from Ar 
and CO2 to heptane and toluene. The experimental density region that is 
covered in Fig. 2 ranges from the vapor-pressure curve to the freezing curve 
at various temperatures between T~p and Tc. The data were taken from 
several compilations [20, 22-25]. Data from near the critical point are 
omitted because Eq. (5) is not expected to be very accurate in this region, 
inasmuch as it is an analytic expression whereas the critical region is 
known to be nonanalytic. 

The points in Fig. 2 do indeed fall close to a single straight line, as 
predicted, although they are somewhat closer to a line of slope -0 .98 (not 
shown) than to the predicted one of slope - 1.00. From the scatter it can 
be concluded that the density of a compressed liquid at any specified 
pressure and temperature can be predicted within an accuracy of better 
than about 5 %. This is about the same as the accuracy of the predictions 
based on the constants To, Pc, and co [14]. 

These results show that the equation of state of compressed liquids can 
be predicted from knowledge of just two constants, AHvap and Ptp, which 
can be obtained from measurements of the vapor pressures and saturated 
liquid densities at two temperatures. 

5. MIXTURES 

The present correlation procedure can be generalized to mixtures of 
any number of components, a result which should have great predictive 
power. We present the formulas and procedures for mixtures here, 
although extensive testing by comparison with measurements on com- 
pressed liquid mixtures remains for future work. 

The formal extension of Eq. (5) to mixtures can be written in the form 
[26] 

p/pRT= 1 + p ~ xix/(B+/-- o~) F~ + p ~ x+x/~o.G ~ 
ij ij 

(lO) 
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where p is the total molar density, xi and x~ are mole fractions, and the 
double summations run over all the components. For a single substance 
F l=l+6bpandG 1 = 1 _ 2 b p .  

The interaction parameters Bis, e~j, and b U for i r  correspond to a 
hypothetical single substance whose molecules interact according to a 
pairwise i - j  potential. For i =  j, the parameters are those for the corre- 
sponding pure substance i. To find the interaction parameters for i r j, we 
use in principle effective pair potentials, such as those used to predict e(T) 
and b(T) from B(T), although the potentials do not need to enter the 
calculations explicitly. The potential strength is characterized by an average 
well depth e, and the potential range by an average potential-minimum 
position rm; the corresponding quantities in the present calculation are 
AHvap'e and Ptp~rm 3. The simplest combining rules for predicting 
unlike-molecule interactions from the like-molecule interactions are a 
geometric mean for e and an arithmetic mean for rm, so that our 
combining rules would be 

(AHvap)u= [ (Amvap) i (Amvap)j] 1/2 (11) 

(Ptp)/j 1/3 1 1/3 1/3] = ~[(Ptp)i + (Ptp)f (12) 

Once (./JHvap) U and (Ptp)0 are  known, the values of Bo, ~,j, and b o follow 
from Eqs. (6)-(8) as for single substances. 

For mixtures the quantities G o and F,j are given by [26] 

1 ( ~ _ , j ) p Z k x k b k  (2k--1/4) = + bibj 1/3 2/3 

G~ 1 - 0  (l_rl)( l_pZkxkbk2k) (13) 

1 b~bj 1/3 PZk kbk (6~+1/4) (14) 
F~ 1 -~/ (1 - r / ) ( l  +pZkXkbk6k) 

where tl is the packing fraction for the mixture, 

q = (p/4) • xkbk (15) 
k 

and 6k=0.222k as before. Here the single summations run over all the 
components. Notice that the only interaction parameter in these expres- 
sions is b 0 but that, nevertheless, G~j and F~ depend on all the components 
of the mixture. 

The general formulas for fluid mixtures, Eqs. (10) and (13)-(15), have 
been shown to give accurate results for small molecules [26]. What still 
needs to be tested are the combining rules given by Eqs. (11) and (12), and 
their application to compressed liquid mixtures of large molecules, but this 
remains for future work. 
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6. DISCUSSION 

Our essential result is that the equation of state for a compressed 
liquid or liquid mixture can be predicted over the entire liquid range 
without the need for any high-pressure measurements. Two constants are 
needed for each pure component, AHva p and rOtp, and it is worthwhile to 
discuss the availability of these quantities. 

There is seldom any difficulty in determining liquid densities; only 
simple measurcments arc needed if values cannot be found in the literature. 
The temperature constant AHvap/R is more difficult. Direct calorimetric 
measurements of AHvav are usually not very accurate unless considerable 
care is taken. It is easier to measure the vapor pressure at two (or more) 
temperatures and calculate AHvap from the Clausius-Clapeyron equation, 

In p = C -  AHv~p/RT (16) 

where C is a constant. This is the procedure we have used in our present 
examples. 

If vapor-pressure data are lacking and it is too much trouble to 
measure the vapor pressures, perhaps because only some rough preliminary 
estimates on a compressed liquid are wanted, then AHva v can be estimated 
from the boiling point temperature, Tbp- The simplest estimate follows 
from Trouton's rule, that the entropy of vaporization at the boiling point 
is approximately the same for all "normal" liquids. This is equivalent to the 
statement that C in Eq. (16) is the same for all normal liquids, and the 
result is 

AHv,p/R ~ 10.2 Tbp (/7) 

where 10.2 R,,~85 J/mol-K is the entropy of vaporization, obtained from 
experimental data on a number of liquids [27]. This gives the value of 
AHvap at  Tbp. 

A more accurate variation of Trouton's rule is due to Hildebrand, who 
stated that the entropy of vaporization for normal liquids is the same at the 
temperature at which the molar density of the vapor is the same, rather 
than at the temperature at which the vapor pressure is 1 atm. An empirical 
formula embodying this rule, obtained by fitting data for a large number 
of substances, is [28] 

AHvap(25~ ~ -- 1485 + 11.9 ~/bp + 0.010 T 2 (18) bp 

Thus AHva p at 25~ can be found if only 1'by is known. 
If Tbp is so high that decomposition is a problem, then the Hildebrand 

rule can still be used to obtain an expression by which AHva  p c a n  be 
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estimated from the boiling point at some other pressure. Scatchard found 
that low vapor pressures could be well estimated by a relation between 
ln(p/T) and I/T instead of between In p and 1/T as in Eq. (16). His result 
is [,19, 29] 

ln(p/T) = Y/(1 + 0.05 Y) (19) 

F =  1 0 . 8  - A/RT (20) 

where p is in Torr. Here A depends on the particular substance, but the 
constant 10.8 is universal for normal liquids. (It has different values for 
various polar liquids.) Application of the relation d In p/dT= --AHvap/RT 2 
then yields 

AHva p T(10.8- Y) 
T+ (21) 

R (1 d- 0.05 y)2 

Thus knowledge of T at some fixed low p determines Y and hence AHvap. 
All of the foregoing procedures yield only approximate values of 

AHvar,/R and, hence, of B, ~, and b from Eqs. (6)-(8). However, errors will 
be compensated by choosing 2 to fit the known liquid density. 

Finally, it should be mentioned that AHvap/R is not the only 
reasonable possibility for a temperature scale constant. For example, it is 
well-known that the surface tension 7 is related to AHvap. The reason is 
that AHva p can also be considered to be the surface energy required to 
carve 1 mol of liquid into No tiny cubes of edge d, each one containing one 
molecule of diameter d [-30]. Then AHvap,,~No(6d27), since each cube 
has six faces, and the molar volume is approximately v= 1/p,,~No d3. 
Eliminating d between these two relations, we obtain 

AHva p ~ 6N1/37/p2/3 (22) 

The numerical factor in this expression is very approximate, and we do not 
recommend Eq.(22) as a way to find AHvap, but the relation clearly 
suggests that a reasonable characteristic reference temperature could be 
defined as 

RTref = 7/p 2/3 (23) 

This definition would properly require a new correlation for B to replace 
Eq. (6), but then Eqs. (7) and (8) for a and b follow immediately by 
scaling, and the rest of the calculation proceeds as before. Such a new 
correlation remains for future work. 

In summary, statistical-mechanical theory now allows the equation of 
state of compressed liquids and their mixtures to be predicted from simple 
measurements at ordinary pressures and temperatures. 
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